Let a, b, c and n be natural numbers and LCM(a, b) = m. Prove that
(a) if a divides n and b divides n, then m less than or equal to n.
(b) LCM(a, b) ≤ ab.
(c) if c divides a and c divides 6, then LCM(a/c, b/c) = m/c (d) It can be shown that GCD(a, b) can be written in the form ax + by, for some integers x and y. Use this to prove Euclid's Lemma: If a divides be and GCD(a, b) = 1, then a divides c.
(e) if GCD(a, b) = 1, then LCM(a, b) = ab.
(f) if GCD(a, b) = d, then GCD(a/d, b/d) = 1
(g) LCM(a, b) GCD(a, b) = ab.