101k views
19 votes
How do I evaluate this using trigonometric substitution?

∫dx/(81x^2+4)^2

User NRaf
by
2.8k points

1 Answer

6 votes

Answer:


\displaystyle (1)/(144)arctan((9x)/(2)) + (x)/(8(81x^2 + 4)) + C

General Formulas and Concepts:

Alg I

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)

Pre-Calc

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio:
\displaystyle sec(\theta) = (1)/(cos(\theta))

Trigonometric Identity:
\displaystyle tan^2\theta + 1 = sec^2\theta

TI:
\displaystyle sin(2x) = 2sin(x)cos(x)

TI:
\displaystyle cos^2(\theta) = (cos(2x) + 1)/(2)

Calc

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a²x = atanθ

Explanation:

Step 1: Define


\displaystyle \int {(dx)/((81x^2 + 4)^2)}

Step 2: Identify Sub Variables Pt.1

Rewrite integral [factor expression]:


\displaystyle \int {(dx)/([(9x)^2 + 4]^2)}

Identify u-trig sub:


\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = (2)/(9)tan\theta\\dx = (2)/(9)sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to x):


\displaystyle tan\theta = (9x)/(2) \rightarrow \theta = arctan((9x)/(2))

Step 3: Integrate Pt.1

  1. [Int] Sub u-trig variables:
    \displaystyle \int {((2)/(9)sec^2\theta)/([(2tan\theta)^2 + 4]^2)} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:
    \displaystyle (2)/(9) \int {(sec^2\theta)/([(2tan\theta)^2 + 4]^2)} \ d\theta
  3. [Int] Evaluate exponents:
    \displaystyle (2)/(9) \int {(sec^2\theta)/([4tan^2\theta + 4]^2)} \ d\theta
  4. [Int] Factor:
    \displaystyle (2)/(9) \int {(sec^2\theta)/([4(tan^2\theta + 1)]^2)} \ d\theta
  5. [Int] Rewrite [TI]:
    \displaystyle (2)/(9) \int {(sec^2\theta)/([4sec^2\theta]^2)} \ d\theta
  6. [Int] Evaluate exponents:
    \displaystyle (2)/(9) \int {(sec^2\theta)/(16sec^4\theta) \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:
    \displaystyle (1)/(72) \int {(sec^2\theta)/(sec^4\theta) \ d\theta
  8. [Int] Divide [ER - D]:
    \displaystyle (1)/(72) \int {(1)/(sec^2\theta) \ d\theta
  9. [Int] Rewrite [TR]:
    \displaystyle (1)/(72) \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:
    \displaystyle (1)/(72) \int {(cos(2\theta) + 1)/(2)} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:
    \displaystyle (1)/(144) \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:
    \displaystyle (1)/(144) [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]

Step 4: Identify Sub Variables Pt.2

Determine u-sub for trig int:

u = 2θ

du = 2dθ

Step 5: Integrate Pt.2

  1. [Ints] Rewrite [Int Prop - MC]:
    \displaystyle (1)/(144) [(1)/(2) \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:
    \displaystyle (1)/(144) [(1)/(2) \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:
    \displaystyle (1)/(144) [(1)/(2) sin(u) + \theta + C]
  4. [Expression] Back Sub:
    \displaystyle (1)/(144) [(1)/(2) sin(2 \theta) + arctan((9x)/(2)) + C]
  5. [Exp] Rewrite [TI]:
    \displaystyle (1)/(144) [(1)/(2)(2sin(\theta)cos(\theta)) + arctan((9x)/(2)) + C]
  6. [Exp] Multiply:
    \displaystyle (1)/(144) [sin(\theta)cos(\theta) + arctan((9x)/(2)) + C]
  7. [Exp] Back Sub:
    \displaystyle (1)/(144) [sin(arctan((9x)/(2)))cos(arctan((9x)/(2))) + arctan((9x)/(2)) + C]

Step 6: Triangle

Find trig values:


\displaystyle tan\theta = (9x)/(2)


\displaystyle \theta = arctan((9x)/(2))

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg a = 2

Leg b = 9x

Leg c = ?

  1. Sub variables [PT]:
    \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:
    \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:
    \displaystyle √(4 + 81x^2) = c
  4. Rewrite:
    c = √(81x^2 + 4)

Substitute into trig ratios:


\displaystyle sin\theta = (9x)/(√(81x^2 + 4))


\displaystyle cos\theta = (2)/(√(81x^2 + 4))

Step 7: Integrate Pt.3

  1. [Exp] Sub variables [TR]:
    \displaystyle (1)/(144) [(9x)/(√(81x^2 + 4)) \cdot (2)/(√(81x^2 + 4)) + arctan((9x)/(2)) + C]
  2. [Exp] Multiply:
    \displaystyle (1)/(144) [(18x)/(81x^2 + 4) + arctan((9x)/(2)) + C]
  3. [Exp] Distribute:
    \displaystyle (1)/(144)arctan((9x)/(2)) + (x)/(8(81x^2 + 4)) + C
User Tengen
by
3.8k points