Final answer:
To find the equation with the same solution set as 4 - 2(x - 5) = -19, we need to simplify the equation and compare it to the answer choices. None of the answer choices have the same solution as the original equation.
Step-by-step explanation:
To find the equation with the same solution set as 4 - 2(x - 5) = -19, we need to simplify the given equation and compare it to the answer choices. First, distribute -2 to (x - 5) to get -2x + 10. Then, add 10 to both sides to cancel out the constant term -19. the equation becomes -2x = -9. Finally, divide both sides by -2 to solve for x, giving us x = 4.5.
Now, let's analyze the answer choices:
a) 3x - 7 = -19: This equation simplifies to 3x = -12, which means x = -4. This is not the same solution as x = 4.5.
b) 5 - 2x = 19: This equation simplifies to -2x = 14, which means x = -7. This is not the same solution as x = 4.5.
c) 2(x - 5) = -19: This equation simplifies to 2x = -9, which means x = -4.5. This is not the same solution as x = 4.5.
d) -2x + 4 = -19: This equation simplifies to -2x = -23, which means x = 11.5. This is not the same solution as x = 4.5.
None of the answer choices have the same solution set as the original equation, so the answer is None of the above.