The value is

It looks like you're trying to evaluate the expression
. Let's break it down step by step:
![\[ (\ln\left((12)/(38.6)\right))/(-0.1947) \]](https://img.qammunity.org/2024/formulas/mathematics/college/xqjn4dmj1zcdim69wte6qh2954sy6xnk05.png)
First, calculate the natural logarithm of the fraction inside:
![\[ \ln\left((12)/(38.6)\right) \]](https://img.qammunity.org/2024/formulas/mathematics/college/v0y02ejgk0jpjufzpqyjvddabo8cr0fl8s.png)
![\[ \ln\left((0.31088)/(1)\right) \]](https://img.qammunity.org/2024/formulas/mathematics/college/xq0q9jay10exqrh71orn9iyn8l71bl5f2b.png)
Now, compute the natural logarithm:
![\[ \ln(0.31088) \]](https://img.qammunity.org/2024/formulas/mathematics/college/bvyp03aztzk3gyn0o3ac0l11nq6wzf7mr1.png)
Now, divide this result by \(-0.1947\):
![\[ (\ln(0.31088))/(-0.1947) \]](https://img.qammunity.org/2024/formulas/mathematics/college/g9du08tx23yqkn5ovayw2gwwdmocbdeg6a.png)
Apply the logarithm power identity:
ln(0.310880829 1/-0.1947)
Divide the numbers:
ln(0.310880829 −5.1361068310 )
Therefore the value is
