Final Answer:
The point T that partitions the segment with endpoints D(1, 4) and F(7, 1) in a 3:1 ratio is T(4, 4) .
Step-by-step explanation:
To find the point T that divides the line segment DF in a 3:1 ratio, we use the section formula:
![\[ T\left(\frac{{3x_2 + 1x_1}}{{3+1}}, \frac{{3y_2 + 1y_1}}{{3+1}}\right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tyxcyh7yftsgb69yz9y78a66vya653wq1k.png)
Given the endpointsD(1, 4) and F(7, 1) we substitute these values into the formula:
![\[ T\left(\frac{{3 \cdot 7 + 1 \cdot 1}}{{3+1}}, \frac{{3 \cdot 1 + 1 \cdot 4}}{{3+1}}\right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7gm3usnp5y4idauzony8cfoby001fxn10s.png)
Simplifying, we get:
T(4, 4
Therefore, the correct answer is T(4, 4) , and it partitions the segment in a 3:1 ratio.