Answer:
![y=- (5)/(4)x-4](https://img.qammunity.org/2022/formulas/mathematics/college/rcde340i2o915t1l23glno6ibhvugc2uoz.png)
Explanation:
1) if the A has coordinates (-4;1) and B - (-8;6), then it is possible to write the formula of the required line:
![(X-X_A)/(X_A-X_B) =(Y-Y_A)/(Y_B-Y_A);](https://img.qammunity.org/2022/formulas/mathematics/college/ut4tji4fzh112angli63u8sa7ydt146ug4.png)
2) if to substitute the coordinates given in the condition, then:
![(X+4)/(-8+4) =(Y-1)/(6-1);](https://img.qammunity.org/2022/formulas/mathematics/college/t0e7akfc78zr8u736tpvqueoth05i2sqn0.png)
3) finally, the required equation of the line is:
-4y=5x+16; ⇔y= -5/4 x-4 (slope-intersection form)
PS. note, the suggested solution is not the only one.