Remember that
cos(s+t)=cos(s)cos(t)-sin(s)sin(t)
and
cos(s-t)=cos(s)cos(t)+sin(s)sin(t)
In this problem we have
cos(s)=-3/5
sin(t)=-1/5
s and t in quadrant III
that means
cos(s) and cos(t) are negative
sin(s) and sin(t) are negative
step 1
Find sin(s)
Apply
cos^2(s)+sin^2(s)=1
substitute
(-3/5)^2+sin^2(s)=1
sin^2(s)=1-9/25
sin^2(s)=16/25
sin(s)=-4/5
step 2
Find cos(t)
cos^2(t)+sin^2(t)=1
cos^2(t) +(-1/5)^2=1
cos^2(t)=1-1/25
cos^2(t)=24/25
cos(t)=-2√6/5
step 3
Find
cos(s+t)=cos(s)cos(t)-sin(s)sin(t)
substitute given values
cos(s+t)=(-3/5)(-2√6/5)-(-4/5)(-1/5)
cos(s+t)=(6√6/25)-(4/25)
cos(s+t)=(6√6-4)/25
step 4
Find cos(s-t)
cos(s-t)=cos(s)cos(t)+sin(s)sin(t)
cos(s-t)=(-3/5)(-2√6/5)+(-4/5)(-1/5)
cos(s-t)=(6√6/25)+(4/25)
cos(s-t)=(6√6+4)/25