The given expression is not an identity because expression
is not equal to a + b.
How to show proof?
The expression
is not an identity equal to a + b.
To demonstrate this, let's perform the multiplication and simplify:
![\[ (a + b)(a' - ab + b') = a(a' - ab + b') + b(a' - ab + b') \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/be4cejid8rhuacj12nkedmyat0rknf4eu6.png)
Now distribute and simplify:
![\[ a \cdot a' - a \cdot ab + a \cdot b' + b \cdot a' - b \cdot ab + b \cdot b' \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j9h2bd85x8i54oqa8hk14g03atbzvab7y9.png)
Combine like terms:
![\[ aa' - a^2b + ab' + ba' - ab^2 + bb' \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nlniqzsm60i47i7f2jv4buqe6vdq1hzbm6.png)
Now, reorder the terms:
![\[ aa' + ba' + ab' - a^2b - ab^2 + bb' \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/uuzmeyhdw6rrrvyfkv27qlovbzyhybjuk5.png)
The expression
is not equal to a + b, so the given expression is not an identity.