Final answer:
The Wilcoxon Signed-Rank Test compares two sets of measurements from the same subjects to determine if there is a significant difference between them. The differences between the measurements for each subject are calculated to perform the test.
Step-by-step explanation:
The Wilcoxon Signed-Rank Test is used when you want to compare two sets of measurements for matched or paired samples to see if their population mean ranks differ. It is a non-parametric alternative to the paired Student's t-test. In the context of the Wilcoxon Signed-Rank Test, the difference between the two measurements for each individual is the absolute value of the difference between the pair of observations, with a sign assigned based on the order of the measurements.
Here's how it typically works:
Two measurements are taken from the same pair of individuals or objects.
Differences are calculated from these paired samples.
The signed differences then form the sample used in the hypothesis test.
The population mean of these differences is tested against the null hypothesis of zero median difference.