283,436 views
10 votes
10 votes
ConvertV3 + i to polar form.

User Arnelle Balane
by
3.0k points

1 Answer

19 votes
19 votes

ANSWER


2(\cos 30+i\sin 30)

Step-by-step explanation

We want to convert the complex number to polar form:


\sqrt[]{3}+i

The general polar form of a complex number is:


r(\cos \theta+i\sin \theta)

where:


\begin{gathered} r=\sqrt[]{x^2+y^2} \\ \theta=\tan ^(-1)((y)/(x)) \end{gathered}

Note: x is the real part of the complex number while y is the coefficient of i.

Therefore, from the number given:


\begin{gathered} x=\sqrt[]{3} \\ y=1 \end{gathered}

We now have to find r and θ:


\begin{gathered} \Rightarrow r=\sqrt[]{(\sqrt[]{3})^2+1^2}=\sqrt[]{3+1} \\ r=\sqrt[]{4} \\ r=2 \\ \Rightarrow\theta=\tan ^(-1)(\frac{1}{\sqrt[]{3}}) \\ \theta=30\degree \end{gathered}

Therefore, the polar form of the complex number is:


\begin{gathered} 2\cos 30+2i\sin 30 \\ \Rightarrow2(\cos 30+i\sin 30) \end{gathered}

User Paulo Mendes
by
3.1k points