436,581 views
30 votes
30 votes
Let 0 be an angle in quadrant iv such that

Let 0 be an angle in quadrant iv such that-example-1
User Nsinvocation
by
2.6k points

1 Answer

5 votes
5 votes

Answer


\begin{gathered} \tan \theta=-(8)/(15) \\ \cos ^{}\theta=(15)/(17) \end{gathered}

Step-by-step explanation

Given:


\begin{gathered} \theta\text{ is in quadrant VI,} \\ \csc \theta=-(17)/(8) \end{gathered}

Using trigonometric identity, To find the exact value of tan θ


1+\cot ^2\theta=\csc ^2\theta
\begin{gathered} 1+\cot ^2\theta=(-(17)/(8))^2 \\ 1+\cot ^2\theta=(289)/(64) \\ \cot ^2\theta=(289)/(64)-1 \\ \cot ^2\theta=(289-64)/(64) \\ \cot ^2\theta=(225)/(64) \\ \cot ^{}\theta=\pm\sqrt[]{(225)/(64)} \\ \cot \theta=\pm(15)/(8) \\ \text{But cot }\theta=(1)/(\tan \theta) \\ \Rightarrow\text{tan }\theta=\pm(8)/(15) \\ \text{Since }\theta\text{ is in quadrant VI, then tan }\theta\text{ is negative} \\ \tan \theta=-(8)/(15) \end{gathered}

To find the exact value of cos θ


\begin{gathered} \text{Using trigonometric identuty} \\ \cos ^2\theta=(1)/(1+\tan ^2\theta) \\ \cos ^2\theta=(1)/(1+((64)/(225))) \\ \cos ^2\theta=(1)/((289)/(225)) \\ \cos ^2\theta=(225)/(289) \\ \cos ^{}\theta=\pm\sqrt[]{(225)/(289)} \\ \cos ^{}\theta=\pm(15)/(17) \\ \text{Since }\theta\text{ is in quadrant VI, cos }\theta\text{ is positve} \\ \therefore\cos ^{}\theta=(15)/(17) \end{gathered}

θ

User Jubin Thomas
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.