216k views
17 votes
F(x) = 3 x 2 − 3 x − 6 The domain of a the function f(x) is { -10, -1, 1, 5 }. What is the range of the relation?

1 Answer

10 votes

Answer:

{324, 0, -6, 54}

Explanation:

Given that F(x) = 3x² − 3 x − 6 If the domain of a the function f(x) is { -10, -1, 1, 5 }.

To get the range, we will find f(x) for all the domains

at x = -10

f(-10) = 3(-10)²-3(-10) - 6

f(-10) = 3(100)-3(-10) - 6

f(-10) = 300+30-6

f(-10) = 330-6

f(-10) = 324

at x = -1

f(-1) = 3(-1)²-3(-1) - 6

f(-1) = 3(1)-3(-1) - 6

f(-1) = 3+3-6

f(-1) = 6-6

f(-1) = 0

at x = 1

f(1) = 3(1)²-3(1) - 6

f(1) = 3(1)-3(1) - 6

f(1) = 3-3-6

f(1) = 0-6

f(1) = -6

at x = 5

f(5) = 3(5)²-3(5) - 6

f(5) = 3(25)-3(5) - 6

f(5) = 75-15-6

f(5) = 60-6

f(5) = 54

Hence the range of the relation are {324, 0, -6, 54}

User Eyups
by
5.3k points