The
are all equal to 1.
The given diffusion equation is:
![\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(L)\right) e^{-D\left((n^2\pi^2)/(L^2)\right)t} \]](https://img.qammunity.org/2024/formulas/mathematics/college/8mamxmsplxsi4dhx4ilg6zxuzr8jubi12c.png)
With the boundary conditions
and
, and using the fact that L = 3, we have:
![\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) e^{-D\left((n^2\pi^2)/(9)\right)t} \]](https://img.qammunity.org/2024/formulas/mathematics/college/bxm0vaw46synm41bvj2gt5i5wv0gy6w5wv.png)
To find the
, we can use the orthogonality of sine functions over the interval [0, L]:
![\[ \int_(0)^(L) \sin\left((m\pi x)/(L)\right) \sin\left((n\pi x)/(L)\right) \,dx = (L)/(2) \delta_(mn) \]](https://img.qammunity.org/2024/formulas/mathematics/college/s4xrn0ec23jlle1l0zsxe60dfhifpravxi.png)
where
is the Kronecker delta. Applying this to our problem:
![\[ \int_(0)^(3) \sin\left((m\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mn) \]](https://img.qammunity.org/2024/formulas/mathematics/college/vtdj2prcjl8vzxfekrsraamzd24koypgzc.png)
Now, multiply both sides by
and integrate from 0 to 3:
![\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \left[ \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) \right] \,dx = (3)/(2) \delta_(mk) \]](https://img.qammunity.org/2024/formulas/mathematics/college/wp0fw0ihudatlzgqxleg77i747jkmqmhxu.png)
This simplifies to:
![\[ \sum_(n=1)^(\infty) b_n \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]](https://img.qammunity.org/2024/formulas/mathematics/college/jv56klqdeopwluwrbsq8a59989kc7na3uw.png)
Now, evaluate the integral:
![\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]](https://img.qammunity.org/2024/formulas/mathematics/college/7vztzxhn2g6lzn7qqw9vc4gmykoi9dtui1.png)
This integral will be non-zero only when k = n, so the sum becomes:
![\[ b_n \int_(0)^(3) \sin^2\left((n\pi x)/(3)\right) \,dx = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/8hilhk5xufml4yni8cf0hj75xv1yk562yl.png)
Now, evaluate the integral:
![\[ b_n \int_(0)^(3) (1 - \cos\left((2n\pi x)/(3)\right))/(2) \,dx = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/qgconxzyd2l1r866vwd8tzaov2lzz0wup8.png)
![\[ b_n \left[(x)/(2) - (3\sin\left((2n\pi x)/(3)\right))/(4n\pi)\right]_0^3 = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/rqodm1qgne3v5mpq2cthu66vsppq1pt4gw.png)
![\[ b_n \left[(3)/(2) - (3\sin\left(2n\pi\right))/(4n\pi)\right] = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/fjcm0hkncaesd2e4abbm4wdhpfa93yysiy.png)
![\[ b_n \left[(3)/(2) - (3\sin(0))/(4n\pi)\right] = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/f2hr2754bcvp74oh2q2j2h74zb18ojokto.png)
![\[ b_n \left[(3)/(2)\right] = (3)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/127crodqr71do019cbuu1bdgmu1o2l18g6.png)
![\[ b_n = 1 \]](https://img.qammunity.org/2024/formulas/mathematics/college/hiab032ifh9bt6bv7lziywge66wl0hczuz.png)
Therefore, the
are all equal to 1.