204k views
1 vote
Please the steps clearly and simply. This is a differential equations question

Please the steps clearly and simply. This is a differential equations question-example-1
User Covener
by
7.8k points

1 Answer

5 votes

The
\(b_n\)'s are all equal to 1.

The given diffusion equation is:


\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(L)\right) e^{-D\left((n^2\pi^2)/(L^2)\right)t} \]

With the boundary conditions
\(u(0, t) = 0\) and
\(u(L, t) = 0\), and using the fact that L = 3, we have:


\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) e^{-D\left((n^2\pi^2)/(9)\right)t} \]

To find the
\(b_n\)'s, we can use the orthogonality of sine functions over the interval [0, L]:


\[ \int_(0)^(L) \sin\left((m\pi x)/(L)\right) \sin\left((n\pi x)/(L)\right) \,dx = (L)/(2) \delta_(mn) \]

where
\(\delta_(mn)\) is the Kronecker delta. Applying this to our problem:


\[ \int_(0)^(3) \sin\left((m\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mn) \]

Now, multiply both sides by
\(\sin\left((k\pi x)/(3)\right)\) and integrate from 0 to 3:


\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \left[ \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) \right] \,dx = (3)/(2) \delta_(mk) \]

This simplifies to:


\[ \sum_(n=1)^(\infty) b_n \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]

Now, evaluate the integral:


\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]

This integral will be non-zero only when k = n, so the sum becomes:


\[ b_n \int_(0)^(3) \sin^2\left((n\pi x)/(3)\right) \,dx = (3)/(2) \]

Now, evaluate the integral:


\[ b_n \int_(0)^(3) (1 - \cos\left((2n\pi x)/(3)\right))/(2) \,dx = (3)/(2) \]


\[ b_n \left[(x)/(2) - (3\sin\left((2n\pi x)/(3)\right))/(4n\pi)\right]_0^3 = (3)/(2) \]


\[ b_n \left[(3)/(2) - (3\sin\left(2n\pi\right))/(4n\pi)\right] = (3)/(2) \]


\[ b_n \left[(3)/(2) - (3\sin(0))/(4n\pi)\right] = (3)/(2) \]


\[ b_n \left[(3)/(2)\right] = (3)/(2) \]


\[ b_n = 1 \]

Therefore, the
\(b_n\)'s are all equal to 1.

User Trakos
by
8.5k points