204k views
1 vote
Please the steps clearly and simply. This is a differential equations question

Please the steps clearly and simply. This is a differential equations question-example-1
User Covener
by
8.1k points

1 Answer

5 votes

The
\(b_n\)'s are all equal to 1.

The given diffusion equation is:


\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(L)\right) e^{-D\left((n^2\pi^2)/(L^2)\right)t} \]

With the boundary conditions
\(u(0, t) = 0\) and
\(u(L, t) = 0\), and using the fact that L = 3, we have:


\[ 8u(x, t) = \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) e^{-D\left((n^2\pi^2)/(9)\right)t} \]

To find the
\(b_n\)'s, we can use the orthogonality of sine functions over the interval [0, L]:


\[ \int_(0)^(L) \sin\left((m\pi x)/(L)\right) \sin\left((n\pi x)/(L)\right) \,dx = (L)/(2) \delta_(mn) \]

where
\(\delta_(mn)\) is the Kronecker delta. Applying this to our problem:


\[ \int_(0)^(3) \sin\left((m\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mn) \]

Now, multiply both sides by
\(\sin\left((k\pi x)/(3)\right)\) and integrate from 0 to 3:


\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \left[ \sum_(n=1)^(\infty) b_n \sin\left((n\pi x)/(3)\right) \right] \,dx = (3)/(2) \delta_(mk) \]

This simplifies to:


\[ \sum_(n=1)^(\infty) b_n \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]

Now, evaluate the integral:


\[ \int_(0)^(3) \sin\left((k\pi x)/(3)\right) \sin\left((n\pi x)/(3)\right) \,dx = (3)/(2) \delta_(mk) \]

This integral will be non-zero only when k = n, so the sum becomes:


\[ b_n \int_(0)^(3) \sin^2\left((n\pi x)/(3)\right) \,dx = (3)/(2) \]

Now, evaluate the integral:


\[ b_n \int_(0)^(3) (1 - \cos\left((2n\pi x)/(3)\right))/(2) \,dx = (3)/(2) \]


\[ b_n \left[(x)/(2) - (3\sin\left((2n\pi x)/(3)\right))/(4n\pi)\right]_0^3 = (3)/(2) \]


\[ b_n \left[(3)/(2) - (3\sin\left(2n\pi\right))/(4n\pi)\right] = (3)/(2) \]


\[ b_n \left[(3)/(2) - (3\sin(0))/(4n\pi)\right] = (3)/(2) \]


\[ b_n \left[(3)/(2)\right] = (3)/(2) \]


\[ b_n = 1 \]

Therefore, the
\(b_n\)'s are all equal to 1.

User Trakos
by
9.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.