Final answer:
To import a decision tree from sklearn, install the library, import the DecisionTreeClassifier class, create an instance of the class, and fit the model to your data.
Step-by-step explanation:
To import a decision tree from the scikit-learn library in Python, you need to follow the following steps:
- Install scikit-learn library using the command 'pip install sklearn'.
- Import the decision tree class from the sklearn.tree module using the statement: from sklearn.tree import DecisionTreeClassifier.
- Create an instance of the DecisionTreeClassifier class using the statement: dt = DecisionTreeClassifier().
- Fit the decision tree model to your data using the 'fit' function, specifying the input features and target variable.
Here's an example:
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
X = [[2, 3], [4, 5], [6, 7]]
y = [0, 1, 1]
dt.fit(X, y)