20,554 views
25 votes
25 votes
Find all the roots of the following equationsx^3-2x^2-5x+10=0 using the p and q method

User Anthony Elliott
by
2.1k points

1 Answer

28 votes
28 votes

EXPLANATION

Given the equation:

x^3 -2x^2 -5x + 10 = 0

Grouping terms:


=(x^3-2x^2)+(-5x+_{}10)

Factor out -5 from (-5x+10) and x^2 from (x^3-2x^2):


=x^2(x-2)-5(x-2)

Factor out common term x-2:


=(x-2)(x^2-5)

Factor x^2-5:


x^2-5=x^2-(\sqrt[]{5})^2

Apply difference of two squares formula:


x^2-y^2=(x+y)(x-y)
x^2-(\sqrt[]{5})^2=(x+\sqrt[]{5})(x-\sqrt[]{5})

Grouping factor:


=(x-2)(x+\sqrt[]{5})(x-\sqrt[]{5})

Equaling to zero in order to get the roots:


(x-2)(x+\sqrt[]{5})(x-\sqrt[]{5})=0

Using the zero factor principle:


\text{If ab=0, then a=0 or b=0}
x-2=0\longrightarrow\text{ x=2 \lbrack{}First root\rbrack}
x+\sqrt[]{5}=0\longrightarrow\text{ x=-}\sqrt[]{5}\text{ \lbrack{}Second root\rbrack}
x-\sqrt[]{5}=0\longrightarrow\text{ x=}\sqrt[]{5}\lbrack Third\text{ Root\rbrack}

The roots are:

x=2, x=-sqrt(5) and x=sqrt(5)

User Kornelia
by
3.2k points