162k views
4 votes
Write a linear equation that meets each of the following criteria. Then graph each equation on Desmos.

A. A standard form equation with a positive slope and a negative y-intercept.
B. A slope-intercept form equation with a negative slope and a y-intercept of 0.
C. A point-slope form equation with a negative slope and a positive y-intercept.
D. A zero-slope line

User Mattes
by
8.1k points

1 Answer

3 votes

Final answer:

To write a linear equation with specific criteria, we can use different forms of linear equations based on the given conditions. For part A, a standard form equation with a positive slope and a negative y-intercept can be written as 2x - 3y = -6. For part B, a slope-intercept form equation with a negative slope and a y-intercept of 0 is y = -0.5x. For part C, a point-slope form equation with a negative slope and a positive y-intercept can be written as y - 4 = -2(x - 3). And finally, for part D, a zero-slope line can be represented by simply setting y equal to a constant value, such as y = 5.

Step-by-step explanation:

A. To write a standard form equation with a positive slope and a negative y-intercept, we can use the form Ax + By = C, where A, B, and C are constants. Let’s say we choose A = 2, B = -3, and C = -6. The equation would be 2x - 3y = -6.

B. To write a slope-intercept form equation with a negative slope and a y-intercept of 0, we can use the form y = mx + b, where m is the slope and b is the y-intercept. Let’s say we choose m = -0.5. The equation would be y = -0.5x.

C. To write a point-slope form equation with a negative slope and a positive y-intercept, we can use the form y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope. Let’s say we choose (x1, y1) = (3, 4) and m = -2. The equation would be y - 4 = -2(x - 3).

D. A zero-slope line is a horizontal line. We can write an equation for a horizontal line at some positive value by setting y equal to that value. For example, the equation y = 5 represents a horizontal line at y = 5.

User Michael Blake
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories