215k views
5 votes
Rotation 90° clockwise about the origins U(1, -2), W(0, 2), K(3, 2), and G(3, -3). What are the

new coordinates for the parallelogram?

User Psadac
by
8.4k points

1 Answer

6 votes

Final answer:

To perform a 90° clockwise rotation about the origin, use the rotation matrix formula for each point's x and y coordinates.

Step-by-step explanation:

To perform a 90° clockwise rotation about the origin, you will need to use the rotation matrix formula:

x' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)

  1. For point U(1, -2), applying the formulas:
    x' = 1*cos(90°) - (-2)*sin(90°)
    y' = 1*sin(90°) + (-2)*cos(90°)
  2. For point W(0, 2), applying the formulas:
    x' = 0*cos(90°) - 2*sin(90°)
    y' = 0*sin(90°) + 2*cos(90°)
  3. For point K(3, 2), applying the formulas:
    x' = 3*cos(90°) - 2*sin(90°)
    y' = 3*sin(90°) + 2*cos(90°)
  4. For point G(3, -3), applying the formulas:
    x' = 3*cos(90°) - (-3)*sin(90°)
    y' = 3*sin(90°) + (-3)*cos(90°)

User Andy Weinstein
by
7.7k points