Final answer:
The point-slope form of the line with a slope of 4 that goes through (-2,10) is y - 10 = 4(x + 2). At the point (1, y), the value of y is 22, making the correct equation y = 4x + 18.
Step-by-step explanation:
To write the point-slope form of the line with a slope of 4 that passes through the point (-2,10), we use the formula y - y1 = m(x - x1), where m is the slope and (x1, y1) is the given point. Substituting the given values, we get: y - 10 = 4(x + 2).
At the point (1, y), to find y, we substitute x = 1 into the equation:
y - 10 = 4(1 + 2)
y - 10 = 4 × 3
y - 10 = 12
Therefore, y = 12 + 10 = 22.
Comparing this result with the provided options, the correct equation that matches y = 22 when x = 1 is y = 4x + 18.