Final answer:
To prove the identity 2 - csc(β)sin(β) = sin^2(β) + cos^2(β), we can use trigonometric properties.
Step-by-step explanation:
To prove the identity 2 - csc(β)sin(β) = sin^2(β) + cos^2(β), we can use trigonometric properties.
First, let's express everything in terms of sine and cosine:
2 - (1/sin(β))sin(β) = sin^2(β) + cos^2(β)
Next, simplify the left side:
2 - 1 = sin^2(β) + cos^2(β)
Finally, apply the Pythagorean identity sin^2(β) + cos^2(β) = 1 to get:
1 = 1
Therefore, the identity is proven.