490,561 views
42 votes
42 votes
Exact values of the side lengths in simplified radical form.

Exact values of the side lengths in simplified radical form.-example-1
User Bill Nadeau
by
2.7k points

1 Answer

12 votes
12 votes
Step-by-step explanation

First triangle

Since it is a right triangle, we can use the trigonometric ratio tan(θ) to find the length b.


\tan(\theta)=\frac{\text{ Opposite side}}{\text{ Adjacent side}}

So, we have:


\begin{gathered} \tan(\theta)=\frac{\text{ Opposite side}}{\text{ Adjacent side}} \\ \tan(60°)=(b)/(7) \\ \text{ Multiply by 7 from both sides} \\ \tan(60)*7=(b)/(7)*7 \\ √(3)*7=b \\ 7√(3)=b \end{gathered}

Second triangle

Since it is a right triangle, we can use the trigonometric ratio cos(θ) to find the length a.


\cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}}

So, we have:


\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent side}}{\text{ Hypotenuse}} \\ \cos(45\degree)=(a)/(5) \\ \text{ Multiply by 5 from both sides} \\ \cos(45\degree)*5=(a)/(5)*5 \\ (√(2))/(2)*5=a \\ (5√(2))/(2)=a \end{gathered}Answer
\begin{gathered} b=7√(3) \\ a=(5√(2))/(2) \end{gathered}

Exact values of the side lengths in simplified radical form.-example-1
Exact values of the side lengths in simplified radical form.-example-2
User Wade Anderson
by
3.3k points