31.6k views
0 votes
A line segment has endpoint A[10, 146) and B(160, 86) What are the coordinates of the point that is to of the distance from point A to point B? Enter your answers in the boxes.

User Chinelo
by
7.9k points

1 Answer

6 votes

Final answer:

To find the point two-thirds of the distance from point A to point B, we can use the midpoint formula. The coordinates of the midpoint between two points (x1, y1) and (x2, y2) is given by ((x1 + x2) / 2, (y1 + y2) / 2). Using the given coordinates of point A (10, 146) and point B (160, 86), the midpoint is (85, 116).

Step-by-step explanation:

To find the point that is two-thirds of the distance from point A to point B, we can use the midpoint formula. The midpoint formula states that the coordinates of the midpoint between two points (x1, y1) and (x2, y2) is given by:

Midpoint = ((x1 + x2) / 2, (y1 + y2) / 2)

Using the given coordinates of point A (10, 146) and point B (160, 86), we can substitute these values into the midpoint formula to find the coordinates of the desired point:

Midpoint = ((10 + 160) / 2, (146 + 86) / 2)

Simplifying, we get:

Midpoint = (85, 116)

User Liam Mueller
by
8.4k points