The focus point of the parabola is (2, 0), which corresponds to option D.
The given equation of the parabola is in the form
, where (h, k) is the vertex of the parabola. The focus point of a parabola is given by
.
In the equation
, we can rewrite it in the form

![\[ y = (1)/(8)(x^2 - 4x - 12) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t6z6q73216lb669iw46hbh53vhl0dw7hxb.png)
![\[ y = (1)/(8)(x^2 - 4x + 4 - 4 - 12) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wm1cewwyw9498cp4jfzszyn85a8412oal0.png)
![\[ y = (1)/(8)((x - 2)^2 - 16) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/113xtuvn6mjro9c5h39vx08rxji8z8029n.png)
![\[ y = (1)/(8)(x - 2)^2 - 2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3eh46m25nr70f2oqjxo7yyfpem7t1hi89s.png)
Now, we can see that the vertex (h, k) is (2, -2). The focus point is then given by
.
For this parabola,
, so the focus point is:
![\[ (2, -2 + (1)/(4((1)/(8)))) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8yyrbb63rpq64sx0cm5nsyhdfr41eaydrm.png)
![\[ (2, -2 + (1)/(4((1)/(8)))) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8yyrbb63rpq64sx0cm5nsyhdfr41eaydrm.png)
![\[ (2, -2 + 2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/or8m764iqd1bksy36xx8slhlfsmf1jzfza.png)
![\[ (2, 0) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gyu846lafqzkurltq6v38he4wu077huvfs.png)
Therefore, the correct focus point is (2, 0).