8.7k views
5 votes
What is the image of F(-2, 7) after a rotation of 180° clockwise?

A. F'(2, -7)
B. F'(-2, -7)
C. F(7, -2)
D. F'(2, 7)

1 Answer

3 votes

Final answer:

The image of F(-2, 7) after a rotation of 180° clockwise is F'(2, -7).

Step-by-step explanation:

To find the image of a point after a rotation, we can use the formula (x', y') = (xcosθ - ysinθ, xsinθ + ycosθ), where (x, y) are the coordinates of the original point and (x', y') are the coordinates of the image after rotation.

In this case, the original point is F(-2, 7) and we want to rotate it 180° clockwise. This means the rotation angle θ is 180°. Substituting the values into the formula, we get:

(x', y') = (-2cos180° - 7sin180°, -2sin180° + 7cos180°)

After evaluating the trigonometric functions, we find that the image of F(-2, 7) after a rotation of 180° clockwise is F'(2, -7).

User Lev Khruschev
by
7.9k points