Final answer:
The rate of change for the interval 2 ≤ x ≤ 5 is 0.041. Therefore, the correct option is c).
Step-by-step explanation:
The rate of change represents how much the function value is changing concerning the independent variable.
In this case, the function that models the situation is f(x) = 1 + 0.035/12 * 750, where x represents time in years.
To find the rate of change for the interval 2 ≤ x ≤ 5, we need to calculate the difference in the function values at the endpoints of the interval divided by the difference in the independent variable:
Rate of change = (f(5) - f(2)) / (5 - 2)
Substituting the values into the function:
Rate of change = (1 + 0.035/12 * 750) - (1 + 0.035/12 * 750) / (5 - 2)
Rate of change = (1 + 0.035/12 * 750) / 3
Rate of change = 0.041
Therefore, the correct option is c).