400,705 views
36 votes
36 votes
1. Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate.

1. Find the missing parts of the triangle. Round to the nearest tenth when necessary-example-1
User Oniramarf
by
2.4k points

1 Answer

19 votes
19 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given sides


\begin{gathered} a=7.3in \\ b=13.2in \\ c=15.8in \end{gathered}

STEP 2: Write the formula to calculate the missing angles

To get the missing angles, we use the cosine laws and sine laws stated below:


\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ b^2=a^2+c^2-2ac\cos B \\ c^2=a^2+b^2-2ab\cos C \\ \\ Sine\text{ law:} \\ (\sin A)/(a)=(\sin B)/(b)=(sinC)/(c) \end{gathered}

STEP 3: Use the cosine law to find the angle A


\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ Making\text{ sin A the subject of the formula, we have:} \\ -2bc\cos A=a^2-b^2-c^2 \\ \sin A=(a^2-b^2-c^2)/(-2bc) \\ \\ By\text{ substitution,} \\ \cos A=(7.3^2-13.2^2-15.8^2)/(-2(13.2*15.8^)) \\ \cos A=(-370.59)/(-417.12)=0.888449367 \\ A=\cos^(-1)0.888449367 \\ A=27.3209628 \\ A\approx27.3^(\circ) \end{gathered}

Angle A = 27.3 degrees

STEP 4: Find Angle B

Using sine rule, we have:


\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ By\text{ substitution,} \\ (\sin27.3)/(7.3)=(\sin B)/(13.2) \\ By\text{ cross multiplication,} \\ sinB*7.3=sin27.3*13.2 \\ sinB=(\sin27.3*13.2)/(7.3) \\ \sin B=0.82933892 \\ B=\sin^(-1)0.82933892 \\ B=56.0308892 \\ B=56.1^(\circ) \end{gathered}

STEP 5: Calculate the Angle C

Recall that the sum of angles in a triangle is 180 degrees, therefore,


\begin{gathered} A+B+C=180^(\circ) \\ By\text{ substitution,} \\ 27.3^(\circ)+56.1^(\circ)+C=180^(\circ) \\ C=180^(\circ)-27.3^(\circ)-56.1^(\circ) \\ C=180^(\circ)-83.4=96.6^(\circ) \end{gathered}

Hence, the angles are:


A=27.3^(\circ),B=56.1^(\circ),C=96.6^(\circ)

OPTION A

User Klik
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.