The diaphragm moves back and forth approximately
times in 1 minute.
To find the number of oscillations or cycles n in 1 minute, we can use the relationship between angular frequency
and frequency f in simple harmonic motion:
![\[ \omega = 2\pi f \]](https://img.qammunity.org/2024/formulas/physics/high-school/kk4sf4u7ocg67glt63f4ifo4ck343qz69u.png)
Thus:
![\[ f = (\omega)/(2\pi) \]](https://img.qammunity.org/2024/formulas/physics/high-school/2eu3tx09rqgbnu5hd8py9esn9hrxkjbm1i.png)
Given the angular frequency
as
, we can substitute this into the formula:
![\[ f = (8.02 * 10^4)/(2\pi) \]](https://img.qammunity.org/2024/formulas/physics/high-school/x80gyyl3i14kq137yh81fte342bigv3sji.png)
Now, to find the number of cycles (\(n\)) in 1 minute, we can use the formula:
![\[ n = f * \text{time in seconds} \]](https://img.qammunity.org/2024/formulas/physics/high-school/cljjpi8bjk9b0jo5pl0qsbsokf69ryw937.png)
Since there are 60 seconds in 1 minute, we substitute \(60\) seconds for the time:
![\[ n = f * 60 \]](https://img.qammunity.org/2024/formulas/physics/high-school/os2zwrxgpe0hh6y2k8ye03te8o1a5oi4nj.png)
Calculate Frequency f:
![\[ f = (\omega)/(2\pi) = (8.02 * 10^4)/(2\pi) \]](https://img.qammunity.org/2024/formulas/physics/high-school/zek9318bov7de75vkjz0ztxwfr8nvo7szr.png)
![\[ f \approx (8.02 * 10^4)/(2 * 3.1416) \]](https://img.qammunity.org/2024/formulas/physics/high-school/llhruso8f2n0anc3tcrwu86v1drjsrh7tk.png)
![\[ f \approx (8.02 * 10^4)/(6.2832) \]](https://img.qammunity.org/2024/formulas/physics/high-school/g5zbthrwnt6kxbyciplntnbjznkuwscy40.png)
![\[ f \approx 1.276 * 10^4 \, \text{Hz} \]](https://img.qammunity.org/2024/formulas/physics/high-school/12bco3mobw4q27i5x1ksq0l90prtre80nt.png)
Number of Cycles n in 1 Minute:
![\[ n = f * \text{time in seconds} \]](https://img.qammunity.org/2024/formulas/physics/high-school/cljjpi8bjk9b0jo5pl0qsbsokf69ryw937.png)
Since there are 60 seconds in 1 minute:
![\[ n = 1.276 * 10^4 * 60 \]](https://img.qammunity.org/2024/formulas/physics/high-school/jbignw1bg4rf8ykm3conm5ojh427lfy9uz.png)
![\[ n \approx 7.656 * 10^5 \, \text{cycles} \]](https://img.qammunity.org/2024/formulas/physics/high-school/6pc5aryv09elpjp8mo1zr4vg9athj5f702.png)
Therefore, the diaphragm moves back and forth approximately
times in 1 minute.