Final answer:
In this case, the value of T is
![T=\left[\begin{array}{ccc} 2 \\ 5 \\0\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c0hqon8ny2dwn9eu12840um4urg8p84dgn.png)
Step-by-step explanation:
To find the value of T, we can use the given information about the linear transformation T:R³ -> R³ and the transformation of the standard basis vectors.
We are given:
![T\left[\begin{array}{ccc}1 \\0\\0\end{array}\right] =\left[\begin{array}{ccc}-4\\-4\\1\end{array}\right] T\left[\begin{array}{ccc}0\\1\\0\end{array}\right] =\left[\begin{array}{ccc}-3\\0\\1\end{array}\right] T\left[\begin{array}{ccc}0\\0\\1\end{array}\right] =\left[\begin{array}{ccc}-1 \\-4\\3\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/82mjr5f8cqgkzcxeg6dhpe9rkh55y9bw2o.png)
We can write the transformation matrix for T using the images of the standard basis vectors as columns:
![T= \left[\begin{array}{ccc}T([1, 0, 0]) \\T([0, 1, 0])\\T([0, 0, 1])\end{array}\right]= \left[\begin{array}{ccc}(-4, -3, -1)\\(-4, 0, -4)\\(1, 1, 3)\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/k1m04ypabpfufy0yr1h78k0ca0wuzi3t5v.png)
To find the value of T, we multiply the transformation matrix by the given vector:
![T*\left[\begin{array}{ccc}-1\\-4\\3\end{array}\right]= \left[\begin{array}{ccc}(-4)(-1) + (-3)(-4) + (-1)(3)\\(-4)(-4) + 0 + (-4)(3)\\ (1)(-1) + 1 + (3)(3)\end{array}\right]= \left[\begin{array}{ccc} 2 \\ 5 \\0\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t2gfbj1ot4zkr6rhdtji62ip27u7r8v1mr.png)
Therefore,
.
The correct answer is
.
Your question is incomplete, but most probably the full question was:
If T:R³ →R³ is a linear transformation such that
![T \left[\begin{array}{ccc}1 \\0 \\0\end{array}\right] = \left[\begin{array}{ccc}-4\\-4\\1\end{array}\right] , T\left[\begin{array}{ccc}0\\1\\0\end{array}\right] =\left[\begin{array}{ccc}-3\\0\\1\end{array}\right] ,T=\left[\begin{array}{ccc}0\\0\\1\end{array}\right] \left[\begin{array}{ccc}-1\\-4\\3\end{array}\right] ,then \T=\left[\begin{array}{ccc}-2\\ 5 \\0\end{array}\right]=?](https://img.qammunity.org/2024/formulas/mathematics/high-school/smxxu2przypl295ahybtfsp3oxit221s5l.png)