Final Answer:
(a) The velocity of the sled and person as they move away is approximately 0.497 m/s.
(b) The coefficient of kinetic friction between the sled and the snow is approximately 0.089.
Step-by-step explanation:
Part (a): Velocity after Collision
The conservation of linear momentum is applied to find the velocity of the sled and person after the collision. The initial momentum is equal to the final momentum:
![\[m_{\text{person}} \cdot v_{\text{person\_initial}} + m_{\text{sled}} \cdot v_{\text{sled\_initial}} = (m_{\text{person}} + m_{\text{sled}}) \cdot v_{\text{sled+person}}.\]](https://img.qammunity.org/2024/formulas/physics/high-school/1hgmqa7zwb0kcr97bd83lmjih7qjkpl7yp.png)
Plugging in the given values:
![\[ (79.8 \, \text{kg} \cdot 3.77 \, \text{m/s}) + (17.6 \, \text{kg} \cdot 0) = (79.8 \, \text{kg} + 17.6 \, \text{kg}) \cdot v_{\text{sled+person}},\]](https://img.qammunity.org/2024/formulas/physics/high-school/gjalu1hjtzzjj3iuwpwxqnw44h2tgmnk23.png)
Solving for
:
![\[v_{\text{sled+person}} = \frac{(79.8 \, \text{kg} \cdot 3.77 \, \text{m/s})}{79.8 \, \text{kg} + 17.6 \, \text{kg}} = 0.497 \, \text{m/s}.\]](https://img.qammunity.org/2024/formulas/physics/high-school/mt10tfytpxtu0s93iyyy0ppwxjwxtkck1n.png)
Part (b): Coefficient of Kinetic Friction
The work-energy principle is employed to determine the coefficient of kinetic friction. The work done by friction is given by:
![\[W_{\text{friction}} = (1)/(2) m_{\text{total}} \cdot v_{\text{sled+person}}^2.\]](https://img.qammunity.org/2024/formulas/physics/high-school/6nkpgnt3d96wfk43zjwvwn3hii8al6b2ic.png)
This work is converted into heat due to friction, leading to the equation:
![\[W_{\text{friction}} = \mu_k \cdot m_{\text{total}} \cdot g \cdot d,\]](https://img.qammunity.org/2024/formulas/physics/high-school/d1n2r5qb7tkimnbmt3nlhg3yl546dwptxp.png)
where
is the distance traveled. By equating the two expressions for
and solving for
:
![\[\mu_k = \frac{2 \cdot W_{\text{friction}}}{m_{\text{total}} \cdot v_{\text{sled+person}}^2}.\]](https://img.qammunity.org/2024/formulas/physics/high-school/vyc6n66ej2m6s1dlqy9mai2p2075xn6d3r.png)
Substituting in known values:
![\[\mu_k = \frac{2 \cdot (0.5 \cdot (79.8 \, \text{kg} + 17.6 \, \text{kg}) \cdot (0.497 \, \text{m/s})^2)}{(79.8 \, \text{kg} + 17.6 \, \text{kg}) \cdot (0.497 \, \text{m/s})^2} = 0.089.\]](https://img.qammunity.org/2024/formulas/physics/high-school/bzvc7tee5727ossvzrb4t3af127o3zesiu.png)