136k views
1 vote
Evaluate using L'Hopital's rule:


\lim_(x \to 1^(+)) (x - 1)^(lnx)

1 Answer

5 votes

Answer:


\displaystyle \lim_(x\to 1^+)(x-1)^\ln(x)}=1

Explanation:

We are given:


\displaystyle \lim_(x\to 1^+)(x-1)^\ln(x)

And we want to evaluate it using L'Hopital's Rule.

First, using direct substitution, we will acquire:


=(1-1)^\ln(1)}=0^0

Which is indeterminate.

In order to apply L'Hopital's Rule, we first need to manipulate the expression. We will let:


y=(x-1)^\ln(x)

By taking the natural log of both sides:


\ln(y)=\ln(x)\ln(x-1)

And by taking the limit as x approaches 1 from the right of both functions:


\displaystyle \lim_(x\to 1^+)\ln(y)=\lim_(x\to 1^+)\ln(x)\ln(x-1)

Rewrite:


\displaystyle \lim_(x\to 1^+)\ln(y)= \lim_(x\to 1^+)(\ln(x-1))/(\ln(x)^(-1))

Using direct substitution on the right will result in 0/0. Hence, we can now apply L'Hopital's Rule:


\displaystyle \lim_(x\to 1^+)\ln(y)= \lim_(x\to 1^+)(1/(x-1))/(-\ln(x)^(-2)(1/x))

Simplify:


\displaystyle \lim_(x\to 1^+)\ln(y)= \lim_(x\to 1^+)(1/(x-1))/(-\ln(x)^(-2)(1/x))\Big((-x\ln(x)^2)/(-x\ln(x)^2)\Big)

Simplify:


\displaystyle \lim_(x\to 1^+)\ln(y)= \lim_(x\to 1^+)-(x\ln(x)^2)/(x-1)

Now, by using direct substitution, we will acquire:


\displaystyle \Rightarrow -(1\ln(1)^2)/(1-1)=(0)/(0)

Hence, we will apply L'Hopital's Rule once more. Utilize the product rule:


\displaystyle \lim_(x\to 1^+)\ln(y)= \lim_(x\to 1^+)-(\ln(x)^2+2x\ln(x))

Finally, direct substitution yields:


\Rightarrow -(\ln(1)^2+2(1)\ln(1))=-(0+0)=0

Thus:


\displaystyle \lim_(x\to 1^+)\ln(y)=0

By the Composite Function Property for limits:


\displaystyle \lim_(x\to 1^+)\ln(y)=\ln( \lim_(x\to 1^+)y)=0

Raising both sides to e produces:


\displaystyle e^{\ln \lim_(x\to 1^+)y}=e^0

Therefore:


\displaystyle \lim_(x\to 1^+)y=1

Substitution:


\displaystyle \lim_(x\to 1^+)(x-1)^\ln(x)}=1

User UrbanoJVR
by
4.4k points