207k views
3 votes
Find L.C.M. of a4+ a2b2+b4, 23+b3, and a3-b3+ab2​

User Zimba
by
6.4k points

1 Answer

6 votes

Answer:

The LCM of the three expressions is (a + b) * (a^2 - ab + b^2) * (2a^2 - 2ab + b^2) * (a^2 + b^2)

Explanation:

Expression 1: a^4 + a^2b^2 + b^4

Expression 2: 2a^3 + b^3

Expression 3: a^3 - b^3 + ab^2

Factorizing Expression 1:

a^4 + a^2b^2 + b^4 = (a^2 + b^2)(a^2 + b^2)

Factorizing Expression 2:

2a^3 + b^3 = (a + b)(2a^2 - 2ab + b^2)

Factorizing Expression 3:

a^3 - b^3 + ab^2 = (a + b)(a^2 - ab + b^2)

Now, let's find the LCM by identifying the common factors and the factors unique to each expression:

Expression 1: (a + b)(a^2 + b^2) * (a^2 + b^2)

Expression 2: (a + b)(2a^2 - 2ab + b^2)

Expression 3: (a + b)(a^2 - ab + b^2)

LCM: (a + b) * (a^2 - ab + b^2) * (2a^2 - 2ab + b^2) * (a^2 + b^2)

Therefore, the LCM of the three expressions is:

(a + b) * (a^2 - ab + b^2) * (2a^2 - 2ab + b^2) * (a^2 + b^2)

User David Kierans
by
7.9k points