170k views
1 vote
Find (f.g)(x) when f(x)=x*sqr2 -7x+12 and g(x)=7/x*sqr2 -16?​

User Jabbink
by
6.3k points

1 Answer

6 votes

Final answer:

To find (f.g)(x), substitute the function g(x) into the function f(x) and simplify the expression.(f.g)(x) = 49/(x^2*2) - 32/sqrt(2) - 49/(x*sqrt(2)) + 300 - 4sqrt(2)

Step-by-step explanation:

To find (f.g)(x), we need to substitute the function g(x) into the function f(x). First, let's substitute g(x) into f(x):

f(g(x)) = (g(x))^2 - 7(g(x)) + 12

Now, substitute the values of g(x) into this expression:

f(g(x)) = (7/xsqrt(2) - 16)^2 - 7(7/xsqrt(2) - 16) + 12

Next, simplify this expression:

f(g(x)) = (49/(x^2*2) - 32/sqrt(2) + 256) - (49/ (x*sqrt(2)) - 112 + 16) + 12

Finally, combine like terms and simplify the expression:

f(g(x)) = 49/(x^2*2) - 32/sqrt(2) + 256 - 49/(x*sqrt(2)) + 112 - 16 + 12

The final expression for (f.g)(x) is:

(f.g)(x) = 49/(x^2*2) - 32/sqrt(2) - 49/(x*sqrt(2)) + 300 - 4sqrt(2)

User Earid
by
8.1k points