72.6k views
1 vote
Which of the following equations represents a proportional relationship?

A. y= 4x + 7
B. y = 3.52
C. y= 7.52 - 2
D. y = -52 - 8

User Sam Day
by
8.6k points

1 Answer

5 votes

Final Answer:

The equation representing a proportional relationship is (B) y = 3.52.

Step-by-step explanation:

In a proportional relationship, the variables are directly proportional to each other, meaning that one variable is a constant multiple of the other. The equation y = 3.52 exemplifies a proportional relationship, where the constant multiplier is 3.52. This implies that for every unit increase in x, y increases by 3.52 units. Unlike the other options, this equation is in the form y = kx, indicative of a proportional relationship.

Explanation for each option:

Option (A) y = 4x + 7 represents a linear relationship but not a proportional one as there's an additional constant term (7).

Option (B) y = 3.52 is the correct choice for a proportional relationship as it directly relates y to a constant value.

Option (C) y = 7.52 - 2 is a linear equation with a constant term (7.52) and a linear term (-2), making it non-proportional.

Option (D) y = -52 - 8 is also a linear equation with a constant term (-52) and a linear term (-8), indicating a non-proportional relationship.

In summary, option (B) represents a proportional relationship, adhering to the criteria of a constant multiplier linking the variables.

User Tomi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.