96,375 views
45 votes
45 votes
Let sin(θ) = (3 times radical 2)/5 and pi/2 < θ < pi.Part A: Determine the exact value of cos 2θ.Part B: Determine the exact value of sin(θ/2).

Let sin(θ) = (3 times radical 2)/5 and pi/2 < θ < pi.Part A: Determine the exact-example-1
User Ralexrdz
by
2.6k points

1 Answer

16 votes
16 votes

Final Answer:Given: The trigonometric function


sin\theta=(3√(2))/(5)\text{ and }(\pi)/(2)<\theta<\pi

Required: To determine the exact value of


cos2\theta\text{ and sin\lparen}(\theta)/(2))

Explanation: Using the trigonometric identity.


cos2\theta=1-2sin^2\theta

We get,


\begin{gathered} cos2\theta=1-2*((3√(2))/(5))^2 \\ =1-(36)/(5) \\ =-(31)/(36) \end{gathered}

Since theta lies in the second quadrant cos will be negative.

Now,


\begin{gathered} cos\theta=√(1-sin^2\theta) \\ =\sqrt{1-(18)/(25)} \end{gathered}

which gives


cos\theta=-(√(7))/(5)

And,


cos\theta=1-2sin^2(\theta)/(2)

or


sin(\theta)/(2)=\sqrt{(1-cos\theta)/(2)}

Putting the values we get


sin(\theta)/(2)=\sqrt{(1+(√(7))/(5))/(2)}
sin(\theta)/(2)=\sqrt{(5+√(7))/(10)}

Final Answer:


\begin{gathered} cos\theta=-(√(7))/(5) \\ s\imaginaryI n(\theta)/(2)=\sqrt{(5+√(7))/(10)} \end{gathered}

User Logu
by
2.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.