Final answer:
The plane has an initial velocity of 150 m/s and accelerates at a rate of 5 m/s². After 10 seconds, using the kinematic equation S = ut + ½at², the plane travels a distance of 1750 meters.
Step-by-step explanation:
To calculate the distance traveled by the plane after 10 seconds, we use the kinematic equation for uniformly accelerated motion:
S = ut + ½at²
where:
- S is the distance traveled,
- u is the initial velocity,
- t is the time,
- a is the acceleration.
Given that the initial velocity u is 150 m/s, the acceleration a is 5 m/s², and the time t is 10 seconds, the distance S can be calculated as follows:
S = 150 m/s × 10 s + ½ × 5 m/s² × (10 s)²
S = 1500 m + ½ × 5 × 100
S = 1500 m + 250 m
S = 1750 m
Therefore, the plane travels a distance of 1750 meters after 10 seconds.