2.5k views
18 votes
In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of
\angle XYZ and
\angle XZY respectively. Prove that YQ = ZP.

~Thanks in advance ! ♡

In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of \angle XYZ and \angle-example-1

2 Answers

6 votes

Answer:

this is your answer. look at this once.

In the adjoining figure, XY = XZ . YQ and ZP are the bisectors of \angle XYZ and \angle-example-1
User Xathien
by
3.5k points
8 votes

Answer:

See Below.

Explanation:

Statements: Reasons:


1)\, XY=XZ Given


2) \text{ $ m\angle Y= m\angle Z$} Isosceles Triangle Theorem


\displaystyle 3) \text{ $m\angle Y=m\angle XYQ + \angle QYZ$} Angle Addition


\displaystyle 4)\text{ $YQ$ bisects $\angle XYZ$} Given


5) \text{ $m\angle XYQ=m\angle QYZ$} Definition of Bisector


\displaystyle 6)\text{ $m\angle Y=2m\angle QYZ$} Substitution


7)\text{ $m\angle Z=m\angle XZP+m\angle PZY$} Angle Addition


8)\text{ $ZP$ bisects $\angle XZY$} Given


\displaystyle 9) \text{ $m\angle XZP=m\angle PZY$ } Definition of Bisector


\displaystyle 10) \text{ $ m\angle Z = 2m\angle PZY $} Substitution


11)\text{ } 2m\angle QYZ=2m\angle PZY Substitution


12)\text{ }m\angle QYZ=m\angle PZY Division Property of Equality


13)\text{ } YZ=YZ Reflexive Property


14)\text{ } \Delta YZP\cong\Delta ZYQ Angle-Side-Angle Congruence*


15)\text{ } YQ=ZP CPCTC

*For clarification:

∠Y = ∠Z

YZ = YZ (or ZY)

∠PZY = ∠QYZ

So, Angle-Side-Angle Congruence:

ΔYZP is congruent to ΔZYQ

User Jacek Koralik
by
3.3k points