102k views
2 votes
X is in the interior of ∠LIN. m∠LIN=100, m∠LIX=14t, and m∠XIN=x+10. What is the value of t? What are m∠LIX and m∠XIN?

a. t=10, m∠LIX=140, m∠XIN=x+10

b. t=7, m∠LIX=98, m∠XIN=x+10

c. t=5, m∠LIX=70, m∠XIN=x+10

d. t=14, m∠LIX=196, m∠XIN=x+10

1 Answer

1 vote

Final answer:

X is in the interior of ∠LIN. m∠LIN=100, m∠LIX=14t, and m∠XIN=x+10. m∠LIX and m∠XIN is b. t=7, m∠LIX=98, m∠XIN=x+10

Step-by-step explanation:

To determine the value of t, we utilize the information that m∠LIN = 100, m∠LIX = 14t, and m∠XIN = x + 10 within the interior of ∠LIN. The sum of the angles in a linear pair is 180°, so m∠LIN + m∠LIX = 180°. Substituting the given values, we get m∠LIN + 14t = 180, which simplifies to 14t = 80, leading to t = 5.

With t = 5, we can find m∠LIX by substituting t into the expression 14t, resulting in m∠LIX = 14 × 5 = 70°. Similarly, m∠XIN is determined by x + 10, and as m∠LIN = 100°, m∠XIN + m∠LIX = 180°. Substituting the known values, we have x + 10 + 70 = 180, leading to x = 100.

Therefore, the correct answer is option b. t = 7, m∠LIX = 98°, and m∠XIN = x + 10 = 110°. This aligns with the conditions given and satisfies the angle relationships within ∠LIN, providing a consistent and accurate solution.

User Jeanzuck
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories