105,058 views
22 votes
22 votes
Find the function f given that the slope of the tangent line at any point (x, f(x)) is f '(x) and that the graph of f passes through the given point.f '(x) = 4(2x − 9)^3 (5, 11/2)

User Mars
by
2.9k points

1 Answer

11 votes
11 votes

Answer:


f(x)=(1)/(2)(2x-9)^4+5

Explanation:

Given f'(x) defined below:


f^(\prime)(x)=4(2x-9)^3_{}

First, integrate f'(x) to find f(x).


\int f^(\prime)(x)=\int 4(2x-9)^3dx=4\int (2x-9)^3dx

Let u = 2x-9


u=2x-9\implies du=2dx\implies dx=(du)/(2)

Thus:


\begin{gathered} f(u)=4\int u^3(du)/(2)=(4)/(2)\int u^3du=(2u^4)/(4)=(1)/(2)u^4+C \\ \implies f(u)=(1)/(2)u^4+C \end{gathered}

Replace u=2x-9.


f(x)=(1)/(2)(2x-9)^4+C

Next, using the point (5,11/2), we find the value of C, the constant of integration.

At (5, 11/2)


\begin{gathered} x=5,f(x)=(11)/(2) \\ f(x)=(1)/(2)(2x-9)^4+C \\ (11)/(2)=(1)/(2)(2\lbrack5\rbrack-9)^4+C \\ (11)/(2)=(1)/(2)(10-9)^4+C \\ (11)/(2)=(1)/(2)(1)^4+C \\ (11)/(2)=(1)/(2)+C \\ C=(11)/(2)-(1)/(2)=(10)/(2)=5 \end{gathered}

Therefore, the function f(x) is:


f(x)=(1)/(2)(2x-9)^4+5

User MCY
by
2.9k points