S v R is tautologically implied by (pVq)^(p→r)^(q→s)
How to show that S ∨ R is tautologically implied by (P ∨ Q)∧(P →R ) ∧(Q→S)?
Convert the compound propositions into logical notation:
(pVq) = (P ∨ Q)
(p→r) = (¬P ∨ R)
(q→s) = (¬Q ∨ S)
Combine the propositions using the distributive property:
((P ∨ Q) ∧ (¬P ∨ R)) ∧ (¬Q ∨ S)
Apply the antecedent and consequent rules:
(P ∧ (¬P ∨ R)) ∧ (¬Q ∨ S)
(P ∧ R) ∧ (¬Q ∨ S)
Simplify the expression:
(P ∧ R) ∧ S
Apply the disjunctive syllogism rule:
P ∧ R ∴ (P ∨ R)
Combine the results:
P ∧ S ∴ (P ∨ R) ∧ S
Therefore, (S v R) is tautologically implied by (pVq)^(p→r)^(q→s).