Final answer:
The Fourier transform of
, is given by
.
Step-by-step explanation:
To derive the Fourier transform of the given signal
where
, we can use the definition of the Fourier transform and employ the provided hint. The Fourier transform of
, denoted as
, is given by:
![\[ X(f) = \int_(-\infty)^(\infty) x(t) e^(-j2\pi ft) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/yvj7nw66x0rlvuwqocu8hwhmgkwrvpdhky.png)
Now, let's substitute the expression for
into this integral and simplify using the given hint.
![\[ X(f) = \int_(0)^(\infty) te^(-\alpha t)e^(-j2\pi ft) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/nx36z2854azpk8bsfo9zr2lm91nrmrwwl4.png)
**Detailed Calculation:**
1. **Apply the hint:**
![\[ X(f) = \int_(0)^(\infty) te^(-\alpha t)e^(-j2\pi ft) \, dt = \int_(0)^(\infty) te^(-(\alpha+j2\pi f)t) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/aigvzamnas2c31vuenwypqx3xgmxda27bz.png)
2. **Integration:**
![\[ = \int_(0)^(\infty) te^(-st) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/c5k7tpd359j2zts2ihdo68m37kz5nkxbiz.png)
![\[ \text{where } s = \alpha + j2\pi f \]](https://img.qammunity.org/2024/formulas/mathematics/college/ban8bxchatw1qpq5e91v6muekcg6ieupx5.png)
3. **Use the provided expression in the hint:**
![\[ = \int_(0)^(\infty) (1)/(s^2)e^(-st)(1+st) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/sqdjrcvqy69dogw4e06wpnsbp14c8oh3vo.png)
![\[ = (1)/(s^2) \int_(0)^(\infty) (1+st) e^(-st) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/college/yqylnns0w2h3gwyh0ac69wwmefjakj30m3.png)
4. **Integrate each term separately:**
![\[ = (1)/(s^2) \left[ \int_(0)^(\infty) e^(-st) \, dt + \int_(0)^(\infty) ste^(-st) \, dt \right] \]](https://img.qammunity.org/2024/formulas/mathematics/college/2mxvcqyucp103dezudecusq8r3zufl1rof.png)
5. **Evaluate each integral:**
![\[ = (1)/(s^2) \left[ (1)/(s) + (s)/(s^2) \right] \]](https://img.qammunity.org/2024/formulas/mathematics/college/v6pab6f6xqxqitv0oekm3ctk3arixryhko.png)
![\[ = (1)/(s^3) + (1)/(s^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/exkjyavuf3rckga0ek1sngh3nrcriyy721.png)
6. **Substitute back for \(s\):**
![\[ = (1)/((\alpha+j2\pi f)^3) + (1)/((\alpha+j2\pi f)^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/sq5222bretk2fjwetn9h0ffud4ijvpn0wq.png)
Therefore, the Fourier transform
of the given signal
is:
![\[ X(f) = (1)/((\alpha+j2\pi f)^3) + (1)/((\alpha+j2\pi f)^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/o0o1pmq9avgzixh3w940neqkpo3c44hfes.png)