Final answer:
The optimal solution for the given integer programming problem is
.
Step-by-step explanation:
To solve the given integer programming problem graphically, we'll first examine the constraints and then find the feasible region. The objective is to maximize
subject to the given constraints:
![\[ 5x_1 + 2x_2 \leq 16 \]](https://img.qammunity.org/2024/formulas/mathematics/college/d74fyhpl72k0469ma3htyejtbo44jtvwck.png)
![\[ 2x_1 - x_2 \leq 4 \]](https://img.qammunity.org/2024/formulas/mathematics/college/8z7e8vdyrl7fzfsbzfqgcc20dgomwi9vvo.png)
![\[ -x_1 + 2x_2 \leq 4 \]](https://img.qammunity.org/2024/formulas/mathematics/college/lh9zv7wzntqnmasdr29v60uamtxt3xxl2x.png)
![\[ x_1 \geq 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/6owkngymln146y22vssjaos43kvqkt5sig.png)
![\[ x_2 \geq 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/5jjhwk0293rhc555qlg1sl6ondgcaxyhu4.png)
![\[ x_1, x_2 \text{ are integers} \]](https://img.qammunity.org/2024/formulas/mathematics/college/w1hm7kljp68uyo7gy9jpnbhxk4pz9lrt6f.png)
**Detailed Calculation:**
1. **Graph the Constraints:**
Plot the lines corresponding to each constraint.
For
, the line will be
.
For
, the line will be
.
For
, the line will be
.
Mark the feasible region, considering the intersection of all shaded areas.
2. Check Feasibility:
The feasible region should satisfy the non-negativity constraints and integer constraints.
3. Optimization:
Evaluate the objective function
at the corner points of the feasible region.
Identify the point that maximizes
.
4. Integer Constraint:
Check if the coordinates of the optimal point are integers. If not, evaluate the objective function at nearby integer points and select the one with the maximum
value.
5. Conclusion:
Provide the optimal values for
and
that maximize
.