Final answer:
The variances of the revenue under dependent and independent price scenarios can be calculated using the formula: Var(R) = (Sum of (R - Mean(R))^2 * P(R)).
Step-by-step explanation:
In the independent price scenario, the variance of the revenue can be calculated as follows:
- When Rg = 50 and Rh = 50, the revenue is R = 12(Rg) + 12(Rh) = 12(50) + 12(50) = 1200.
- When Rg = 60 and Rh = 50, the revenue is R = 12(Rg) + 12(Rh) = 12(60) + 12(50) = 1380.
- When Rg = 50 and Rh = 60, the revenue is R = 12(Rg) + 12(Rh) = 12(50) + 12(60) = 1320.
- When Rg = 60 and Rh = 60, the revenue is R = 12(Rg) + 12(Rh) = 12(60) + 12(60) = 1440.
Calculate the variance using the formula: Var(R) = (Sum of (R - Mean(R))^2 * P(R))
When Rg = 50 and Rh = 50, the variance is Var(R) = ((1200 - 1350)^2 * 1/4) + ((1380 - 1350)^2 * 1/4) + ((1320 - 1350)^2 * 1/4) + ((1440 - 1350)^2 * 1/4) = 5625.
When Rg = 60 and Rh = 50, the variance is Var(R) = ((1200 - 1350)^2 * 1/4) + ((1380 - 1350)^2 * 1/4) + ((1320 - 1350)^2 * 1/4) + ((1440 - 1350)^2 * 1/4) = 5250.
When Rg = 50 and Rh = 60, the variance is Var(R) = ((1200 - 1350)^2 * 1/4) + ((1380 - 1350)^2 * 1/4) + ((1320 - 1350)^2 * 1/4) + ((1440 - 1350)^2 * 1/4) = 5625.
When Rg = 60 and Rh = 60, the variance is Var(R) = ((1200 - 1350)^2 * 1/4) + ((1380 - 1350)^2 * 1/4) + ((1320 - 1350)^2 * 1/4) + ((1440 - 1350)^2 * 1/4) = 5250.