Final answer:
To show that y[k] = h[k] + 3h[k - 2] using convolution, we need to convolve the input signal x[k] = δ[k] + 3δ[k - 2] with the impulse response h[k]. The final result is y[k] = h[k] + 3h[k - 2].
Step-by-step explanation:
To show that y[k] = h[k] + 3h[k - 2] using convolution, we need to convolve the input signal x[k] = δ[k] + 3δ[k - 2] with the impulse response h[k].
Let's calculate:
[infinity]x[k] ⋆ h[k] = ∑ x[T]h[k - T]
= ∑ (δ[T] + 3δ[T - 2])h[k - T]
Considering T = -[infinity],
= (∑ δ[T]h[k - T]) + 3(∑ δ[T - 2]h[k - T])
= h[k] + 3h[k - 2]
So, y[k] = h[k] + 3h[k - 2].