Final answer:
The difference between the number of people in a town who do not have a driving license and those who do is 190,000, which is expressed in scientific notation as 1.9 x 10µ.
Step-by-step explanation:
The question asks to find the difference between the number of people who do not have a driving license and the number of people who do in a town with a population of approximately 475,000, where 30% have a driving license. This will be expressed in scientific notation.
First, we calculate the number of people who have a driving license:
475,000 x 30% = 142,500.
The number of people who do not have a driving license is:
475,000 - 142,500 = 332,500.
To find the difference, we subtract the number of people who have a license from those who do not:
332,500 - 142,500 = 190,000.
In scientific notation, 190,000 is written as 1.9 x 10⁵.
Therefore, the difference between the number of people who do not have a driving license and the number who do in scientific notation is 1.9 x 10⁵.