Final answer:
To design the microstrip quarter-wave transformer, calculate the impedance using the geometric mean of the load and line impedances. The length of the transformer is a quarter of the wavelength, which is defined by the speed of light, frequency, and effective dielectric constant. The exact physical layout may affect the stub's placement.
Step-by-step explanation:
To design a microstrip quarter-wave transformer, we can use the following formulas:
1. **Stub Length (L):**
![\[ L = (\lambda_g)/(4) \]](https://img.qammunity.org/2024/formulas/physics/college/j1kc7z5swvyi452wgvbp483cmhbigtrykk.png)
where \(\lambda_g\) is the guided wavelength, given by:
![\[ \lambda_g = \frac{\lambda}{\sqrt{1 - \left((f_c)/(f)\right)^2}} \]](https://img.qammunity.org/2024/formulas/physics/college/wn4wi26qtds6917kmaw6nbu4wr7xkjpy42.png)
Here, \(f_c\) is the cutoff frequency, and \(f\) is the operating frequency.
2. **Distance from Load (d):**
\[ d = \frac{\lambda_g}{8} \]
3. **Guided Wavelength (\(\lambda_g\)) Calculation:**
![\[ \lambda = (c)/(f) \]](https://img.qammunity.org/2024/formulas/physics/college/z9u9l83m3b78cmom56shcf178fupswix3y.png)
![\[ \lambda_g = \frac{\lambda}{\sqrt{\varepsilon_{\text{eff}}}} \]](https://img.qammunity.org/2024/formulas/physics/college/obx6wq3nxvvwt2a9eimcist7nfbz23okpa.png)
where \(\varepsilon_{\text{eff}}\) is the effective dielectric constant, given by:
![\[ \varepsilon_{\text{eff}} = (\varepsilon_r + 1)/(2) + (\varepsilon_r - 1)/(2) \left(1 + (12h)/(W)\right)^{-(1)/(2)} \]](https://img.qammunity.org/2024/formulas/physics/college/wuhwrc7za8y68zi791di66u30qzemcv5gx.png)
Here, \(\varepsilon_r\) is the relative permittivity, \(h\) is the substrate thickness, and \(W\) is the width of the microstrip transmission line.
Given parameters:
- Load impedance (\(Z_{\text{load}}\)): 10 Ω
- Characteristic impedance (\(Z_0\)) of the microstrip line: 50 Ω
- Substrate thickness (\(h\)): 1 mm
- Dielectric constant (\(\varepsilon_r\)): 3.5
- Operating frequency (\(f\)): 12.5 GHz
Let's proceed with the calculations:
1. Calculate \(\lambda\):
\[ \lambda = \frac{c}{f} \]
2. Calculate \(\varepsilon_{\text{eff}}\):
![\[ \varepsilon_{\text{eff}} = (\varepsilon_r + 1)/(2) + (\varepsilon_r - 1)/(2) \left(1 + (12h)/(W)\right)^{-(1)/(2)} \]](https://img.qammunity.org/2024/formulas/physics/college/wuhwrc7za8y68zi791di66u30qzemcv5gx.png)
3. Calculate \(\lambda_g\):
![\[ \lambda_g = \frac{\lambda}{\sqrt{\varepsilon_{\text{eff}}}} \]](https://img.qammunity.org/2024/formulas/physics/college/obx6wq3nxvvwt2a9eimcist7nfbz23okpa.png)
4. Calculate the Stub Length (\(L\)):
![\[ L = (\lambda_g)/(4) \]](https://img.qammunity.org/2024/formulas/physics/college/j1kc7z5swvyi452wgvbp483cmhbigtrykk.png)
5. Calculate the Distance from Load (\(d\)):
![\[ d = (\lambda_g)/(8) \]](https://img.qammunity.org/2024/formulas/physics/college/dwtm0bnd148w4y1t74dniednksdpsju8jh.png)
These calculations will yield the required dimensions for the microstrip quarter-wave transformer.