The 95% confidence interval for the ratio of variances is (0.0293, 0.7125).
For Batch 1:
Mean (1) = (1.75 + 2.12 + 2.05 + 1.97) / 4
= 1.975
Variance (s₁²) = [(1.75 - 1.975)² + (2.12 - 1.975)² + (2.05 - 1.975)² + (1.97 - 1.975)²] / (4 - 1)
s₁² = 0.0392
For Batch 2:
Mean (2) = (1.77 + 1.59 + 1.70 + 1.69) / 4
= 1.69
Variance (s₂²) = [(1.77 - 1.69)² + (1.59 - 1.69)² + (1.70 - 1.69)² + (1.69 - 1.69)²] / (4 - 1)
s₂² = 0.0031
F_statistic = s₁² / s₂² = 0.0392 / 0.0031
= 12.65
Degrees of freedom (df_₁): n₁ - 1 = 4 - 1 = 3
Degrees of freedom (df_₂): n₂ - 1 = 4 - 1 = 3
Confidence level: 95%
We then use an F_distribution table or calculator, we find the upper and lower critical F_values:
F_upper (0.95, 3, 3) = 9.28
F_lower (0.05, 3, 3) = 0.39
Lower bound: F_lower * s₂² / s₁² = 0.39 * 0.0031 / 0.0392 = 0.0293
Upper bound: F_upper * s₂² / s₁² = 9.28 * 0.0031 / 0.0392 = 0.7125