81.0k views
3 votes
Find the inverse Laplace transform of the following functions:
3s+4​/s²+4s+8.5 ×8

User Paul Hicks
by
7.9k points

1 Answer

4 votes

Final Answer:

The inverse Laplace transform of the given function (3s + 4) / (s² + 4s + 8) * 8 is 3e^(-2t)cos(2t) + 4e^(-2t)sin(2t).

Step-by-step explanation:

Given Function:

F(s) = (3s + 4) / (s² + 4s + 8) * 8.

Partial Fraction Decomposition:

F(s) = (A(s - 2) + Bs + C) / (s² + 4s + 8).

Solve for Constants A, B, C.

Inverse Laplace Transform of Partial Fractions:

f(t) = A e^(2t)cos(2t) + B e^(2t)sin(2t).

Multiply by 8:

f(t) = 3e^(-2t)cos(2t) + 4e^(-2t)sin(2t).

Therefore, the inverse Laplace transform is 3e^(-2t)cos(2t) + 4e^(-2t)sin(2t).

User Wirsing
by
8.1k points