Final answer:
To determine the transmission matrix
for the system with the transfer function
, we need to:
- Solve for partial fractions for the transfer function.
- Find the coefficients of the partial fractions (A, B, and C).
- Construct the state-space representation

- Determine the transmission matrix
, which relates the input
to the output
in state-space.
The overall process relies on understanding the transfer function and basic state-space concepts in control system theory.
Step-by-step explanation:
To determine the transmission matrix of the system described by the transfer function:
![\[ G(s) = (14(s+8))/(s(s+3)(s+5)) \]](https://img.qammunity.org/2024/formulas/physics/college/kujlz9k6nswpv0w6788pddm0ajj4vtv2qn.png)
We can use the state-space representation. The state-space representation of a system is given by:
![\[\dot{x}(t) = Ax(t) + Bu(t) \]](https://img.qammunity.org/2024/formulas/physics/college/pxkihpdf9hwd2j74zwri9252w4kmp0155c.png)
![\[ y(t) = Cx(t) + Du(t) \]](https://img.qammunity.org/2024/formulas/physics/college/8bwzwnggqokgiv5fpr9lc2oqq5boq2j7gk.png)
Where:
is the state vector,
is the input vector,
is the output vector,
are matrices that define the system.
The state-space representation can be obtained by expressing the transfer function in the following form:
![\[ G(s) = C(sI - A)^(-1)B + D \]](https://img.qammunity.org/2024/formulas/physics/college/uvm4x8hp95gef4m9lh12owg9nf8zpsdq4o.png)
Now, let's start by expressing the transfer function in the form above and then determine the matrices

![\[ G(s) = (N(s))/(D(s)) \]](https://img.qammunity.org/2024/formulas/physics/college/xcr6y5h1g6g1ql11hox07szr7e80d1hkoc.png)
![\[ G(s) = C(sI - A)^(-1)B + D \]](https://img.qammunity.org/2024/formulas/physics/college/uvm4x8hp95gef4m9lh12owg9nf8zpsdq4o.png)
![\[ G(s) = C(sI - A)^(-1)B + D \]](https://img.qammunity.org/2024/formulas/physics/college/uvm4x8hp95gef4m9lh12owg9nf8zpsdq4o.png)
![\[ G(s) = (N(s))/(D(s)) \]](https://img.qammunity.org/2024/formulas/physics/college/xcr6y5h1g6g1ql11hox07szr7e80d1hkoc.png)
![\[ (N(s))/(D(s)) = C(sI - A)^(-1)B + D \]](https://img.qammunity.org/2024/formulas/physics/college/4i3xupsdalp2kcowuzhyc0gbrh4anu0xfj.png)
Now, compare the coefficients to identify
The state-space matrices can be obtained from the following relations:
![\[ A = \]](https://img.qammunity.org/2024/formulas/physics/college/m28v1lb9lg4h6d1mjnzrw26qwb7zv313cy.png)
![\[ B = \]](https://img.qammunity.org/2024/formulas/physics/college/zsib2upi9okv9yv16fdeii0eeqscoyk7ts.png)
![\[ C = \]](https://img.qammunity.org/2024/formulas/physics/college/90cnqfwx89m0bk6itbm83ial51sfyg6uay.png)
![\[ D = \]](https://img.qammunity.org/2024/formulas/physics/college/1vgdmjdcmd4rzf8w20b8mztdfcqf2bzn2o.png)
Once we have these matrices, we can represent the system in state-space form and determine the transmission matrix.
Given the transfer function:
![\[ G(s) = (14(s+8))/(s(s+3)(s+5)) \]](https://img.qammunity.org/2024/formulas/physics/college/kujlz9k6nswpv0w6788pddm0ajj4vtv2qn.png)
Let's express it in the form:
![\[ G(s) = C(sI - A)^(-1)B + D \]](https://img.qammunity.org/2024/formulas/physics/college/uvm4x8hp95gef4m9lh12owg9nf8zpsdq4o.png)
1. Factorize the denominator:
![\[ s(s+3)(s+5) \]](https://img.qammunity.org/2024/formulas/physics/college/js259rjafsf8gpxw031bqyhyogsqzu0uh4.png)
2. Find the partial fraction decomposition:
![\[ G(s) = (A)/(s) + (B)/(s+3) + (C)/(s+5) \]](https://img.qammunity.org/2024/formulas/physics/college/nk2jyzndbckjbvqdt58nd004t56ng9wxyw.png)
3. Multiply through by the common denominator to get rid of fractions:
![\[ 14(s+8) = A(s+3)(s+5) + B(s)(s+5) + C(s)(s+3) \]](https://img.qammunity.org/2024/formulas/physics/college/vg3kjyo0irjyup7h1iifaf306j9s52m3h0.png)
4. Expand and collect like terms:
![\[ 14s + 112 = A(s^2 + 8s + 15) + B(s^2 + 5s) + C(s^2 + 3s) \]](https://img.qammunity.org/2024/formulas/physics/college/k3yk0htb46l5gdvgmc4iogbeu48c5l4lpq.png)
Now, equate coefficients to find A, B, and C.
5. Once you have A, B, and C, set up the matrices
based on the state-space representation:
![\[ \dot{x}(t) = Ax(t) + Bu(t) \]](https://img.qammunity.org/2024/formulas/physics/college/kyy55rrag9h1qcycs9ncdimvs673p1pzzd.png)
![\[ y(t) = Cx(t) + Du(t) \]](https://img.qammunity.org/2024/formulas/physics/college/8bwzwnggqokgiv5fpr9lc2oqq5boq2j7gk.png)
Where:
is the state vector,
is the input vector,
is the output vector.
![\[ A = \begin{bmatrix} a_(11) & a_(12) & a_(13) \\ a_(21) & a_(22) & a_(23) \\ a_(31) & a_(32) & a_(33) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/physics/college/vd7o0pkq3a6fjsfz74k9d962cbr6ixx9cu.png)
![\[ B = \begin{bmatrix} b_(1) \\ b_(2) \\ b_(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/physics/college/lnou5kk317x9y9ejb4h0z7s8ecqelmb8oc.png)
![\[ C = \begin{bmatrix} c_(1) & c_(2) & c_(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/physics/college/n5upf0wzfdpbxkpkegkqz84wjlzkbbocu1.png)
is a scalar.
Once you have
, you can determine the transmission matrix.