The solution to the system is
![\(x = 3\) and \(y = 2\).](https://img.qammunity.org/2022/formulas/mathematics/college/voyt1snvv9bwzmr77snn26ko140534h6qn.png)
To solve the system of equations:
![3x + 4 &= 8y - 3 \\5x + 1 &= 10y - 4](https://img.qammunity.org/2022/formulas/mathematics/college/xv3t98w0jvvcucvyq3hhyhhrfd0qfxbm50.png)
We can use either the substitution method or the elimination method. Let's use the substitution method.
1. First equation:**
![\[ 3x + 4 = 8y - 3 \]](https://img.qammunity.org/2022/formulas/mathematics/college/3pb63dsw401ter51bvwqujs40v63cmf884.png)
Isolate x by subtracting 4 from both sides:
![\[ 3x = 8y - 7 \]](https://img.qammunity.org/2022/formulas/mathematics/college/x8tbjh55xcbi16t53b68tyi9pcqpxbcdz3.png)
Divide both sides by 3:
![\[ x = (8y - 7)/(3) \]](https://img.qammunity.org/2022/formulas/mathematics/college/a0r3xym0ehsk0q267yjlvni8nxqojo4hf1.png)
2. Substitute into the second equation:
![\[ 5 \left( (8y - 7)/(3) \right) + 1 = 10y - 4 \]](https://img.qammunity.org/2022/formulas/mathematics/college/1xv2fmmyvqt24ffjlirbcsfb3mnztfqska.png)
Multiply both sides by 3 to clear the fraction:
![\[ 5(8y - 7) + 3 = 30y - 12 \]](https://img.qammunity.org/2022/formulas/mathematics/college/sxy58bpgl3gc3864yo9rky9zjyhzkd37zh.png)
Distribute and combine like terms:
![\[ 40y - 35 + 3 = 30y - 12 \]](https://img.qammunity.org/2022/formulas/mathematics/college/71jux1pm5cys3lpflkvzkx239ct2um7qj9.png)
![\[ 40y - 35 + 3 = 30y - 12 \]](https://img.qammunity.org/2022/formulas/mathematics/college/71jux1pm5cys3lpflkvzkx239ct2um7qj9.png)
Subtract 30y from both sides:
![\[ 10y - 32 = -12 \]](https://img.qammunity.org/2022/formulas/mathematics/college/r1ba10wlldwcx69fggt48ry8mz9gcwke3w.png)
Add 32 to both sides:
![\[ 10y = 20 \]](https://img.qammunity.org/2022/formulas/mathematics/college/y5h55ge6n0cpt0t91qt608k5ntt1dmlqsu.png)
Divide by 10:
![\[ y = 2 \]](https://img.qammunity.org/2022/formulas/mathematics/college/boh9m8tssevjjdq312acw65d1aeezaahji.png)
3. Substitute y back into the expression for x:**
![\[ x = (8(2) - 7)/(3) \]](https://img.qammunity.org/2022/formulas/mathematics/college/q51nz9n5t3t0ykrnp1oohiy1rli5iajuw0.png)
![\[ x = (9)/(3) \]](https://img.qammunity.org/2022/formulas/mathematics/college/d1nn1zw0g87wbpap2oifej8kzsuwzi4vn0.png)
![\[ x = 3 \]](https://img.qammunity.org/2022/formulas/mathematics/college/cuu521tga1bo3v5iw31fb9uo84x3o9tnid.png)
So, the solution to the system is x = 3 and y = 2.
The following question may be like this:
Solve the equation
3x+4=8y-3
5x+1=10y-4