The complex zeros of the polynomial function are 5 + 3i and 5 - 3i
The factored form of the polynomial is f(x) = -(x + 1)(x + 1)(3x + 1)(x² - 10x + 34)
Finding the complex zeros of the polynomial function
From the question, we have the following parameters that can be used in our computation:
f(x) = -3x⁵ + 23x⁴ - 37x³ - 189x² - 160x - 34
Using the remainder theorem, we check if x + 1 is a factor of the polynomial
So, we have
f(-1) = -3(-1)⁵ + 23(-1)⁴ - 37(-1)³ - 189(-1)² - 160(-1) - 34
f(-1) = 0
This means that x + 1 is a factor
So, we have
-3x⁴ + 26x³ - 63x² - 126x - 34
x + 1 | -3x⁵ + 23x⁴ - 37x³ - 189x² - 160x - 34
-3x⁵ - 3x⁴
---------------------------------------------------------------------------
26x⁴ - 37x³ - 189x² - 160x - 34
26x⁴ + 26x³
---------------------------------------------------------------------------
-63x³ - 189x² - 160x - 34
- 63x³ - 63x²
---------------------------------------------------------------------------
- 126x² - 160x - 34
- 126x² - 126x
--------------------------------------------------------------
-34x - 34
This means that
-3x⁵ + 23x⁴ - 37x³ - 189x² - 160x - 34 = (x + 1)(-3x⁴ + 26x³ - 63x² - 126x - 34)
Testing if x + 1 is a factor of -3x⁴ + 26x³ - 63x² - 126x - 34 using synthetic division, we have
-1 | -3 26 - 63 -126 -34
| 3 -29 92 34
-3 29 -92 - 34 0
So, we have
-3x⁵ + 23x⁴ - 37x³ - 189x² - 160x - 34 = (x + 1)(x + 1)(-3x³ + 29x² - 92x - 34)
Using the long division again, we have
-x² + 10x - 34
3x + 1 | -3x³ + 29x² - 92x - 34
-3x³ - x²
------------------------------------------------
30x² - 92x - 34
30x² + 10x
-----------------------------------------------------
-102x - 34
-102x - 34
----------------------------------------------------------
0
So, we have
f(x) = -3x⁵ + 23x⁴ - 37x³ - 189x² - 160x - 34 = (x + 1)(x + 1)(3x + 1)(-x² + 10x - 34)
Rewrite as
f(x) = -(x + 1)(x + 1)(3x + 1)(x² - 10x + 34)
Calculating the factor of x² - 10x + 34 using the quadratic formula, we have

So, we have


Evaluate the square root
x = (10 ± 6i)/2
So, we have
x = 5 ± 3i
This means that the complex roots are 5 + 3i and 5 - 3i