Answer:
33. m∠1 = 135°, ∠3 = 45°, ∠2 = 135°
34. m∠1 = 80°, m∠2 = 100°, m∠3 = 100°
35. m∠1 = 90°, m∠2 = 25°
Explanation:
33. The given parameters of the isosceles trapezoid are;
The measure of one of the base angles = 45°
For an isosceles trapezoid, the base angles are equal, therefore, we have;
The measure of the other base angle = m∠3 = 45°
Similarly, m∠1 = m∠2
Also, we have;
The sum of the interior angles in a trapezoid = The sum of the interior angles in a quadrilateral = 360°
∴ 45° + m∠3 + m∠1 + m∠2 = 360°
By substituting the known values, we have;
45° + 45° + m∠1 + m∠2 = 360°
From m∠1 = m∠2, we have;
45° + 45° + m∠1 + m∠1 = 90° + 2·m∠1 = 360°
2·m∠1 = 360° - 90° = 270°
∴ m∠1 = 270°/2 = 135°
m∠1 = 135° = m∠2
Therefore, we have;
∠3 = 45°, ∠1 = 135°, ∠2 = 135°
34. The measure of the base angles = 80°
∴ The measure of the other base angle = m∠1 = 80°
m∠2 = m∠3
80° + m∠1 + m∠2 + m∠3 = 360°
∴ 80° + 80° + 2·m∠2 = 360°
m∠2 = (360° - (80° + 80°))/2 = 100°
m∠2 = 100° = m∠3
35. The kite comprises of two half isosceles triangles
The base angles of the right half isosceles triangle = 65°
The angle formed by the diagonals of the kite = 90° (Perpendicular diagonals theorem)
Therefore, m∠1 = 90°
The diagonals bisect the angles at the vertices (Kite theorem)
Therefore, we have;
65° + 90° + m∠2 = 180°
m∠2 = 180° - (65° + 90°) = 25°
m∠2 = 25°.